Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
ACS Appl Mater Interfaces ; 15(22): 26340-26348, 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20241598

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.


Subject(s)
COVID-19 , Nanofibers , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
2.
Biosensors (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2315555

ABSTRACT

Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.


Subject(s)
Biosensing Techniques , Nanofibers , Nanostructures , Nanotubes, Carbon , Electrochemical Techniques/methods , Nanostructures/chemistry , Biosensing Techniques/methods
3.
ACS Appl Mater Interfaces ; 15(17): 20977-20986, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2297837

ABSTRACT

According to clinical case reports, bacterial co-infection with COVID-19 can significantly increase mortality, with Staphylococcus aureus (S. aureus) being one of the most common pathogens causing complications such as pneumonia. Thus, during the pandemic, research on imparting air filters with antibacterial properties was actively initiated, and several antibacterial agents were investigated. However, air filters with inorganic nanostructures on organic nanofibers (NFs) have not been investigated extensively. This study aimed to demonstrate the efficiency of electropolarized poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) NFs decorated with Li-doped ZnO nanorods (NRs) to improve the filtering ability and antibacterial activity of the ultrathin air filter. The surfactant was loaded onto the ZnO─known for its biocompatibility and low toxicity─nanoparticles (NPs) and transferred to the outer surface of the NFs, where Li-doped ZnO NRs were grown. The Li-doped ZnO NR-decorated NF effectively enhanced the physical filtration efficiency and antibacterial properties. Additionally, by exploiting the ferroelectric properties of Li-doped ZnO NRs and PVDF-TrFE NFs, the filter was electropolarized to increase its Coulombic interaction with PMs and S. aureus. As a result, the filter exhibited a 90% PM1.0 removal efficiency and a 99.5% sterilization rate against S. aureus. The method proposed in this study provides an effective route for simultaneously improving the air filter performance and antibacterial activity.


Subject(s)
Air Filters , COVID-19 , Nanofibers , Zinc Oxide , Humans , Nanofibers/chemistry , Staphylococcus aureus , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Lithium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
4.
Biomater Adv ; 149: 213390, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2288725

ABSTRACT

The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.


Subject(s)
Air Filters , COVID-19 , Nanofibers , Humans , COVID-19/prevention & control , SARS-CoV-2 , Filtration
5.
Int J Environ Res Public Health ; 20(2)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2235533

ABSTRACT

Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.


Subject(s)
COVID-19 , Nanofibers , Humans , Masks , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Filtration/methods
6.
ACS Nano ; 16(11): 19451-19463, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2116590

ABSTRACT

The massive production of polymer-based respiratory masks during the COVID-19 pandemic has rekindled the issue of environmental pollution from nonrecyclable plastic waste. To mitigate this problem, conventional filters should be redesigned with improved filtration performance over the entire operational life while also being naturally degradable at the end. Herein, we developed a functional and biodegradable polymeric filter membrane consisting of a polybutylene adipate terephthalate (PBAT) matrix blended with cetyltrimethylammonium bromide (CTAB) and montmorillonite (MMT) clay, whose surface properties have been modified through cation exchange reactions for good miscibility with PBAT in an organic solvent. Particularly, the spontaneous evolution of a partial core-shell structure (i.e., PBAT core encased by CTAB-MMT shell) during the electrospinning process amplified the triboelectric effect as well as the antibacterial/antiviral activity that was not observed in naive PBAT. Unlike the conventional face mask filter that relies on the electrostatic adsorption mechanism, which deteriorates over time and/or due to external environmental factors, the PBAT@CTAB-MMT nanofiber membrane (NFM)-based filter continuously retains electrostatic charges on the surface due to the triboelectric effect of CTAB-MMT. As a result, the PBAT@CTAB-MMT NFM-based filter showed high filtration efficiencies (98.3%, PM0.3) even at a low differential pressure of 40 Pa or less over its lifetime. Altogether, we not only propose an effective and practical solution to improve the performance of filter membranes while minimizing their environmental footprint but also provide valuable insight into the synergetic functionalities of organic-inorganic hybrid materials for applications beyond filter membranes.


Subject(s)
COVID-19 , Nanofibers , Humans , Nanofibers/chemistry , Cetrimonium , Static Electricity , Pandemics , Polymers/chemistry
7.
Nano Lett ; 22(17): 7212-7219, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2016526

ABSTRACT

The ongoing coronavirus (COVID-19) pandemic requires enormous production of facemasks and related personal protection materials, thereby increasing the amount of nondegradable plastic waste. The core material for facemasks is melt-blown polypropylene (PP) fiber. Each disposable facemask consumes ∼0.7 g of PP fibers, resulting in annual global consumption and disposal of more than 1 150 000 tons of PP fibers annually. Herein, we developed a laser-assisted melt-blown (LAMB) technique to manufacture PP nanofibers with a quality factor of 0.17 Pa-1 and significantly reduced the filter's weight. We demonstrated that a standard surgical facemask could be made with only 0.13 g of PP nanofibers, saving approximately 80% of the PP materials used in commercial facemasks. Theoretical analysis and modeling were also conducted to understand the LAMB process. Importantly, nanofibers can be easily scaled up for mass production by upgrading traditional melt blown line with scanning laser-assisted melt-blown (SLAMB).


Subject(s)
COVID-19 , Nanofibers , COVID-19/prevention & control , Humans , Lasers , Masks , Polypropylenes
8.
J Colloid Interface Sci ; 628(Pt B): 627-636, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-1983354

ABSTRACT

HYPOTHESIS: Particulate matter (PM) pollution and the coronavirus (COVID-19) pandemic have increased demand for protective masks. However, typical protective masks only intercept particles and produce peculiar odors if worn for extended periods owing to bacterial growth. Therefore, new protective materials with good filtration and antibacterial capabilities are required. EXPERIMENTS: In this study, we prepared multi-scale polyvinylidene fluoride (PVDF) nanofibrous membranes for efficient filtration and durable antibacterial properties via N-halamine modification. FINDINGS: The N-halamine-modified nanofibrous membrane (PVDF-PAA-TMP-Cl) had sufficient active chlorine content (800 ppm), and the tensile stress and strain were improved compared with the original membrane, from 6.282 to 9.435 MPa and from 51.3 % to 56.4 %, respectively. To further improve the interception efficiency, ultrafine nanofibers (20-35 nm) were spun on PVDF-PAA-TMP-Cl nanofibrous membranes, and multi-scale PVDF-PAA-TMP-Cl nanofibrous membranes were prepared. These membranes exhibited good PM0.3 interception (99.93 %), low air resistance (79 Pa), promising long-term PM2.5 purification ability, and high bactericidal efficiency (>98 %). After ten chlorination cycles, the antibacterial efficiency against Escherichia coli and Staphylococcus aureus exceeded 90 %; hence, the material demonstrated highly efficient filtration and repeatable antibacterial properties. The results of this study have implications for the development of air and water filtration systems and multi-functional protective materials.


Subject(s)
COVID-19 , Nanofibers , Humans , Chlorine , Anti-Bacterial Agents/pharmacology , Escherichia coli , Water , Particulate Matter
9.
Environ Sci Pollut Res Int ; 29(53): 80411-80421, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1899264

ABSTRACT

As the world battles with the outbreak of the novel coronavirus, it also prepares for future global pandemics that threaten our health, economy, and survivor. During the outbreak, it became evident that use of personal protective equipment (PPE), specially face masks, can significantly slow the otherwise uncontrolled spread of the virus. Nevertheless, the outbreak and its new variants have caused shortage of PPE in many regions of the world. In addition, waste management of the enormous economical and environmental footprint of single use PPE has proven to be a challenge. Therefore, this study advances the theme of decontaminating used masks. More specifically, the effect of various decontamination techniques on the integrity and functionality of nanofiber-based N95 masks (i.e. capable of at least filtering 95% of 0.3 µm aerosols) were examined. These techniques include 70% ethanol, bleaching, boiling, steaming, ironing as well as placement in autoclave, oven, and exposure to microwave (MW) and ultraviolet (UV) light. Herein, filtration efficiency (by Particle Filtration Efficiency equipment), general morphology, and microstructure of nanofibers (by Field Emission Scanning Electron microscopy) prior and after every decontamination technique were observed. The results suggest that decontamination of masks with 70% ethanol can lead to significant unfavorable changes in the microstructure and filtration efficiency (down to 57.33%) of the masks. In other techniques such as bleaching, boiling, steaming, ironing and placement in the oven, filtration efficiency dropped to only about 80% and in addition, some morphological changes in the nanofiber microstructure were seen. Expectedly, there was no significant reduction in filtration efficiency nor microstructural changes in the case of placement in autoclave and exposure to the UV light. It was concluded that, the latter methods are preferable to decontaminate nanofiber-based N95 masks.


Subject(s)
COVID-19 , Nanofibers , Humans , N95 Respirators , Decontamination/methods , Respiratory Aerosols and Droplets , Steam , Ethanol
10.
Acta Biomater ; 146: 211-221, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1813996

ABSTRACT

Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.


Subject(s)
Barrett Esophagus , COVID-19 , Nanofibers , Barrett Esophagus/diagnosis , Barrett Esophagus/microbiology , Barrett Esophagus/pathology , Capsules , Humans
11.
ACS Appl Mater Interfaces ; 14(16): 18989-19001, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1795857

ABSTRACT

Antibacterial air filtration membranes are essential for personal protection during the pandemic of coronavirus disease 2019 (COVID-19). However, high-efficiency filtration with low pressure drop and effective antibiosis is difficult to achieve. To solve this problem, an innovative electrospinning system with low binding energy and high conductivity was built to enhance the jet splitting, and a fluffy nanofibrous membrane containing numerous ultrafine nanofibers and large quantities of antibacterial agents was achieved, which was fabricated by electrospinning polyamide 6 (PA6), poly(vinyl pyrrolidone) (PVP), chitosan (CS), and curcumin (Cur). The filtration efficiency for 0.3 µm NaCl particles was 99.83%, the pressure drop was 54 Pa, and the quality factor (QF) was up to 0.118 Pa-1. CS and Cur synergistically enhanced the antibacterial performance; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.5 and 98.9%, respectively. This work will largely promote the application of natural antibacterial agents in the development of high-efficiency, low-resistance air filters for personal protection by manufacturing ultrafine nanofibers with enhanced antibiosis.


Subject(s)
Air Filters , COVID-19 Drug Treatment , Chitosan , Curcumin , Nanofibers , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Curcumin/pharmacology , Escherichia coli , Filtration , Humans , Nanofibers/chemistry
12.
Environ Sci Technol ; 56(7): 4295-4304, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1735181

ABSTRACT

To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼200 nm) and a small pore size (∼1.5 µm), optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 97.1% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and in general, the performance of virus filtration and disinfection was maintained in artificial saliva and for long-term use. Only sunlight exposure photobleached membranes, reduced singlet oxygen production, and compromised the performance of virus disinfection. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.


Subject(s)
COVID-19 , Nanofibers , Animals , COVID-19/prevention & control , Disinfection , Light , Mice , SARS-CoV-2
13.
Biosensors (Basel) ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1725509

ABSTRACT

Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanocomposites , Nanofibers , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Carbon/chemistry , Dielectric Spectroscopy , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanofibers/chemistry , SARS-CoV-2
14.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1703897

ABSTRACT

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Subject(s)
Antiviral Agents/chemistry , COVID-19/prevention & control , Coated Materials, Biocompatible/chemistry , Nanofibers/chemistry , SARS-CoV-2/chemistry , Animals , COVID-19/transmission , Chlorocebus aethiops , Copper/chemistry , Gold/chemistry , Humans , Polyesters/chemistry , Titanium/chemistry , Vero Cells
15.
Carbohydr Polym ; 283: 119160, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1654130

ABSTRACT

With the forthcoming of the post-COVID-19 and the ageing era, the novel biomaterials and bioelectronic devices are attracting more and more attention and favor. Cellulose as one of the most globe-abundant natural macromolecules has multiple merits of biocompatibility, processability, carbon neutral feature and mechanical designability. Due to its progressive advancement of multi-scale design from macro to micro followed by new cognitions, cellulose shows a promising application prospect in developing bio-functional materials. In this review, we briefly discuss the role of cellulose from the "top-down" perspective of macro-scale fibers, micro-scale nanofibers, and molecular-scale macromolecular chains for the design of advanced cellulose-based functional materials. The focus then turns to the construction and development of emerging cellulose-based flexible bioelectronic devices including biosensors, biomimetic electronic skins, and biological detection devices. Finally, the dilemma and challenge of cellulose-based bioelectronic materials and their application prospects in basic biology and medical care have been prospected.


Subject(s)
Biocompatible Materials , Biosensing Techniques , Cellulose , Wearable Electronic Devices , Nanofibers/chemistry
16.
J Hazard Mater ; 428: 128239, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1610835

ABSTRACT

Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.


Subject(s)
Anti-Infective Agents , Nanofibers , Fluorocarbon Polymers , Humans , Masks , Polyvinyls , Zinc
17.
Nanotechnology ; 33(6)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1493587

ABSTRACT

Wearing a face mask has become a necessity following the outbreak of the coronavirus (COVID-19) disease, where its effectiveness in containing the pandemic has been confirmed. Nevertheless, the pandemic has revealed major deficiencies in the ability to manufacture and ramp up worldwide production of efficient surgical-grade face masks. As a result, many researchers have focused their efforts on the development of low cost, smart and effective face covers. In this article, following a short introduction concerning face mask requirements, the different nanotechnology-enabled techniques for achieving better protection against the SARS-CoV-2 virus are reviewed, including the development of nanoporous and nanofibrous membranes in addition to triboelectric nanogenerators based masks, which can filter the virus using various mechanisms such as straining, electrostatic attraction and electrocution. The development of nanomaterials-based mask coatings to achieve virus repellent and sterilizing capabilities, including antiviral, hydrophobic and photothermal features are also discussed. Finally, the usability of nanotechnology-enabled face masks is discussed and compared with that of current commercial-grade N95 masks. To conclude, we highlight the challenges associated with the quick transfer of nanomaterials-enabled face masks and provide an overall outlook of the importance of nanotechnology in counteracting the COVID-19 and future pandemics.


Subject(s)
COVID-19/prevention & control , Masks , Nanotechnology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/transmission , Filtration , Humans , Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Nanostructures/chemistry , User-Centered Design
18.
J Hazard Mater ; 424(Pt A): 127262, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1414652

ABSTRACT

Air purification through fiber-based filters has become a fundamental requirement for air contamination control. However, conventional filters depend on polymeric fibrous filters with adequate particulate matter removal ability but fewer degassing and biocidal effects. This study presents the photocatalytic volatile organic compound (VOC) oxidation and antimicrobial properties of zinc oxide (ZnO) nano-spines sprouted activated-carbon nanofibers (I@ZnO/ACNFs) and their potential for air contamination control and infection prevention. By developing a novel technique that can induce phase separation of inorganic salts during electrospinning, nanofibers with zinc (Zn) components concentrated on the surface could be synthesized. I@ZnO/ACNFs exhibit a surface densely covered with high aspect-ratio ZnO nano-spines with significant lethality to airborne pathogens and enhanced photocatalytic activity toward VOCs. Moreover, excellent adhesion stability of ZnO to ACNFs under rapid airflow was observed in I@ZnO/ACNFs. In combination with intriguing antimicrobial activity and strong VOC removal capability derived from their unique morphology, novel I@ZnO/ACNFs hold potential for airborne microbial disinfection, effective and sustainable VOC purification, and the design of photomicrobicidal and photocatalytic materials.


Subject(s)
Nanofibers , Volatile Organic Compounds , Zinc Oxide , Bacteria , Carbon Fiber
19.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
20.
J Colloid Interface Sci ; 606(Pt 2): 961-970, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1391399

ABSTRACT

The usage of single-use face masks (SFMs) has increased since the outbreak of the coronavirus pandemic. However, non-degradability and mismanagement of SFMs have raised serious environmental concerns. Moreover, both melt-blown and nanofiber-based mask filters inevitably suffer from poor filtration performance, like a continuous decrease in the removal efficiency for particulate matter (PM) and weak breathability. Herein, we report a new method to create biodegradable and reusable fibrous mask filters. The filter consists of a true nanoscale bio-based poly(lactic acid) (PLA) fiber (an average size of 37 ± 4 nm) that is fabricated via electrospinning of an extremely dilute solution. Furthermore, we designed a multiscale structure with integrated features, such as low basis weight (0.91 g m-2), small pore size (0.73 µm), and high porosity (91.72%), formed by electrospinning deposition of true nanoscale fibers on large pore of 3D scaffold nanofiber membranes. The resultant mask filter exhibited a high filtration efficiency (PM0.3-99.996%) and low pressure drop (104 Pa) superior to the commercial N95 filter. Importantly, this filter has a durable filtering efficiency for PM and natural biodegradability based on PLA. Therefore, this study offers an innovative strategy for the preparation of PLA nanofibers and provides a new design for high-performance nanofiber filters.


Subject(s)
Nanofibers , Filtration , Particulate Matter , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL